
LOI D'OHM, PUISSANCE ET ENERGIE

I- LOI D'OHM

Lorsque l'on mesure la tension aux bornes d'un dipôle résistif pour différentes valeurs d'intensité, on observe que la tension et l'intensité aux bornes de ce dipôle sont proportionnelles.

Exemple:

Voici les valeurs qu'on a pu relever dans le circuit suivant :

- Remplir la deuxième ligne du tableau en convertissant les intensités en ampère.
- $\bullet \;\;$ Remplir la dernière ligne du tableau en calculant le rapport $\frac{U}{I}$ (en prenant I en Ampère).

Intensité I (mA)	60,4	71,1	81,3	90,5	100,9	111,3	120,9
Intensité I							
(A)							
Tension U (V)	6,04	7,09	8,1	9	10,02	11,02	11,97
rapport $\frac{U}{I}$							

ullet Qu'observe-t-on du rapport $\dfrac{U}{I}$?.....

Ce rapport définit une grandeur que l'on appelle la <u>résistance</u>, notée <u>R</u>. Elle s'exprime en <u>ohm</u> (Ω). On définit la loi d'ohm par la formule suivante :

$$U = R \times I$$

R : résistance en ohm (Ω) I : intensité du courant (A)

U: tension (V)

Exercices 11 à 14 p 100 du livre Nathan Technique

II- PUISSANCE ELECTRIQUE

La <u>puissance électrique</u> notée <u>P</u> s'exprime en <u>Watt</u> (W).

La puissance électrique absorbée par un dipôle résistif alimenté en courant continu s'obtient à l'aide de la formule suivante :

$$P = U \times I$$
 avec P en watt (W), U en volt (V), I en ampère (A)

Remarque:

1 mW = 0.001 W1 kW = 1000 W 1 MW = 1000000W

Pour mesurer une puissance électrique, on utilise un wattmètre.

Exercice 19 p 101 du livre Nathan Technique

III-**PUISSANCE DISSIPEE PAR EFFET JOULE**

Les dipôles purement résistifs (radiateurs, fer à repasser ...) traversés par un courant électrique, transforment intégralement la puissance électrique en chaleur : c'est l'effet Joule.

Pour ces dipôles purement résistifs, on peut appliquer la loi d'ohm : $U = R \times I$.

Soit
$$P = U \times I$$
 $P = R \times I \times I$ $P = RI^2$

La puissance électrique absorbée P est égale à la puissance dissipée par effet Joule P_i .

$$P_j = RI^2$$
 avec *P* en watt (W), *R* en ohm (Ω), I en ampère (A)

IV-**ENERGIE ELECTRIQUE**

L'énergie électrique E absorbée par un récepteur dépend de sa puissance P et de sa durée de fonctionnement t.

$$E = P \times t$$
 avec E énergie en joule (J), P en watt (W), t en seconde (s)

Remarque:

- Si t est exprimé en heure, E s'exprime alors en wattheure (Wh). Un kilowattheure (kWh) est égal à 1000Wh.
- Pour mesurer l'énergie électrique absorbée par différents récepteurs, on utilise un compteur électrique.

Exercices 20, 21, 23 et 24 p 101 du livre Nathan Technique